A new benzoxazine compound blocks KATP channels in pancreatic beta cells: molecular basis for tissue selectivity in vitro and hypoglycaemic action in vivo.
نویسندگان
چکیده
BACKGROUND AND PURPOSE The 2-propyl-1,4 benzoxazine (AM10) shows a peculiar behaviour in skeletal muscle, inhibiting or opening the ATP-sensitive K(+) (KATP) channel in the absence and presence of ATP, respectively. We focused on tissue selectivity and mechanism of action of AM10 by testing its effects on pancreatic KATP channels by means of both in vitro and in vivo investigations. EXPERIMENTAL APPROACH In vitro, patch-clamp recordings were performed in native pancreatic beta cells and in tsA201 cells expressing the Kir6.2 Delta C36 channel. In vivo, an intraperitoneal glucose tolerance test was performed in normal mice. KEY RESULTS In contrast with what observed in the skeletal muscle, AM10, in whole cell perforated mode, did not augment KATP current (I(KATP)) of native beta cells but it inhibited it in a concentration-dependent manner (IC(50): 11.5 nM; maximal block: 60%). Accordingly, in current clamp recordings, a concentration-dependent membrane depolarization was observed. On excised patches, AM10 reduced the open-time probability of KATP channels without altering their single channel conductance; the same effect was observed in the presence of trypsin in the bath solution. Moreover, AM10 inhibited, in an ATP-independent manner, the K(+) current resulting from expressed Kir6.2 Delta C36 (maximal block: 60% at 100 microM; IC(50): 12.7 nM) corroborating an interaction with Kir. In vivo, AM10 attenuated the glycemia increase following a glucose bolus in a dose-dependent manner, without, at the dose tested, inducing fasting hypoglycaemia. CONCLUSION AND IMPLICATIONS Altogether, these results help to gain insight into a new class of tissue specific KATP channel modulators.
منابع مشابه
The impact of ATP-sensitive K+ channel subtype selectivity of insulin secretagogues for the coronary vasculature and the myocardium.
Insulin secretagogues (sulfonylureas and glinides) increase insulin secretion by closing the ATP-sensitive K+ channel (KATP channel) in the pancreatic beta-cell membrane. KATP channels subserve important functions also in the heart. First, KATP channels in coronary myocytes contribute to the control of coronary blood flow at rest and in hypoxia. Second, KATP channels in the sarcolemma of cardio...
متن کاملThe Effect of Eight Weeks of Aerobic Exercise on the Expression of Senescence Proteins P53 and P16 in Pancreatic Tissue of Diabetic Mice
Background: Chronic hyperglycemia is associated with an increase in cellular damage due to oxidative stress and increases insulin resistance and also increases in p53 and p16 beta cells, leading to the induction of senescence in pancreatic insulin-secreting cells. The aim of this study was the effect of eight weeks of aerobic exercise on the expression of senescence proteins P53 and P16 in the ...
متن کاملKATP-channels in beta-cells in tissue slices are directly modulated by millimolar ATP.
In pancreatic beta-cells, inhibition of K(ATP)-channels plays a pivotal role in signal transduction of glucose-induced insulin release. However, the extreme sensitivity of K(ATP)-channels to its ligand ATP as found in inside-out patches is not directly compatible with modulation of these channels at physiological [ATP](i). We studied K(ATP)-channel sensitivity to ATP in beta-cells in dispersed ...
متن کاملBlock of ATP-sensitive K+ channels in isolated mouse pancreatic beta-cells by 2,3-butanedione monoxime.
1. The patch-clamp technique has been used to examine the action of the chemical phosphatase 2,3-butanedione monoxime (BDM) on ATP-sensitive K+ channels (KATP-channels) from mouse isolated pancreatic beta-cells in the absence of ATP and Mg2+. 2. BDM reversibly inhibited whole-cell KATP-currents with a concentration for half maximal inhibition (K(i)) of 15 +/- 1 mM and a Hill coefficient (n) of ...
متن کاملبررسی القای تمایز سلولهای بنیادی به سلولهای بتای پانکراس بهوسیله عصاره متانولی یونجه
Background and Objective: β cell replacement therapy by pancreatic islet transplantation has become a promising treatment for type 1 diabetes. Medicago sativa L (Lucerne) from leguminosae family is known to exhibit hypoglycaemic activity both in animal and human studies. Most of these studies were concentrated on the effects of plant extracts on fasting glucose levels. Until now no researches h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- British journal of pharmacology
دوره 149 7 شماره
صفحات -
تاریخ انتشار 2006